5M

Reg. No:	
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG (AUTONOMOUS)	Y:: PUTTUR
B.Tech II Year I Semester Supplementary Examinations Novem	aber-2020
TRANSFORM & DISCRETE MATHEMATICS	
(Common to CE & AGE)	
	Max. Marks: 60
(Answer all the Questions $5 \times 2 = 10$ Marks)	
1 a Find $L(\sin^3 2t)$.	2M
	the should d
b Write inverse Fourier cosine transform.c Define isomorphism of a group.	2M 2M
d State Inclusion and Exclusion.	2M
e State Euler's formula.	2M
	2111
(Answer all Five Units 5 x $10 = 50$ Marks)	
UNIT-I	
2	5M
a Find $L^{-1}\left\{\frac{1}{\left(s^2+5^2\right)^2}\right\}$, using Convolution theorem.	
	5M
b Find $L^{-1}\left\{\frac{s^2}{\left(s^2+4\right)\left(s^2+25\right)}\right\}$, using Convolution theorem.	3111
$(s^2 + 4)(s^2 + 25)$	
OR	
Solve $(\mathbf{D}^2 + 1)\mathbf{x} = t\cos 2t$, $\mathbf{x} = \mathbf{D}\mathbf{x} = 0$ at $t = 0$ by using transfer	orm method. 10M
UNIT-II	
4 a Find the Fourier sine transform of $e^{- x }$ Hence show that	5M
$\int_0^\infty \frac{x \sin mx}{1 + x^2} dx = \frac{\pi}{2} e^{-m}, m > 0.$	
b Find the Fourier cosine transform of $2e^{-5x} + 5e^{-2x}$.	5M
That the Fourier cosme transform of Me 4 36	
OR	
$2\pi(-1)^{n-1}$	10M
Find the inverse finite sine transform $f(x)$ of $\frac{2\pi(-1)^{n-1}}{n^3}$, $n = 1, 2, 3,$	where
$0 < x < \pi$.	
6 Show that $(Z_{11}, +_{11})$ is an abelian group.	10M
\mathbf{OR}	10M
7 a Let $Z_5^* = \{[1], [2], [3], [4]\}$ in which $[1], [2], \dots$ have the same mea	ning as in Z_5 5M
except that	
$Z_5^* = Z_5 - \{[0]\}$. Also let X_5 is multiplication modulo 5. Show that	
given by $g([0]) = [1], g([1]) = [2], g([2]) = [4], g([3]) = [3]$	Defines a
homomorphism from the group $(Z_4, +_4) to(Z_5^*, *_4)$. Hence, show the isomorphic.	ıı g is group
ioomorphie.	

b Show that if a, b are arbitrary elements of a group G then $(ab)^2=a^2b^2$ iff G is abelian.

UNIT	TXT
	- I V
CITIL	A 4

- 8 a How many numbers can be formed using the digits 1, 3, 4, 5, 6, 8 and 9 if no Repetitions are allowed.
 - **b** Find the generating function for the sequence 1,1,1,3,1,1,---.

5M

OR

9 In how many ways can the letters {4a, 3b, 2c} be arranged so that all the letters of 10M same kind are not in a single block.

UNIT-V

- a Explain In degree and out degree of graph. Also explain about the adjacency matrix representation of graphs. Illustrate with an example.
 - **b** Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit.

OR

In a connected plane simple graph G, with |E| > 1, then prove that

10M

5M

(i) $|E| \le 3|V| - 6$, and (ii) there is a vertex v of G such that degree $(v) \le 5$.

END